Skip to main content

Using AWS Bedrock With Saarthi

Saarthi supports accessing models through Amazon Bedrock, a fully managed service that makes a selection of high-performing foundation models (FMs) from leading AI companies available via a single API.

Website: https://aws.amazon.com/bedrock/

Prerequisites

  • AWS Account: You need an active AWS account.
  • Bedrock Access: You must request and be granted access to Amazon Bedrock. See the AWS Bedrock documentation for details on requesting access.
  • Model Access: Within Bedrock, you need to request access to the specific models you want to use (e.g., Anthropic Claude).
  • Install AWS CLI: Use AWS CLI to configure your account for authentication
     aws configure

Getting Credentials

You have two main options for configuring AWS credentials:

  1. AWS Access Keys (Recommended for Development):
    • Create an IAM user with the necessary permissions (at least bedrock:InvokeModel).
    • Generate an access key ID and secret access key for that user.
    • (Optional) Create a session token if required by your IAM configuration.
  2. AWS Profile:
    • Configure an AWS profile using the AWS CLI or by manually editing your AWS credentials file. See the AWS CLI documentation for details.

Supported Models

Saarthi supports the following models through Bedrock (based on source code):

  • Amazon:
    • amazon.nova-pro-v1:0
    • amazon.nova-pro-latency-optimized-v1:0
    • amazon.nova-lite-v1:0
    • amazon.nova-micro-v1:0
    • amazon.titan-text-lite-v1:0
    • amazon.titan-text-express-v1:0
    • amazon.titan-text-embeddings-v1:0
    • amazon.titan-text-embeddings-v2:0
  • Anthropic:
    • anthropic.claude-opus-4-20250514-v1:0
    • anthropic.claude-sonnet-4-20250514-v1:0
    • anthropic.claude-3-7-sonnet-20250219-v1:0
    • anthropic.claude-3-5-sonnet-20241022-v2:0
    • anthropic.claude-3-5-haiku-20241022-v1:0
    • anthropic.claude-3-5-sonnet-20240620-v1:0
    • anthropic.claude-3-opus-20240229-v1:0
    • anthropic.claude-3-sonnet-20240229-v1:0
    • anthropic.claude-3-haiku-20240307-v1:0
    • anthropic.claude-2-1-v1:0
    • anthropic.claude-2-0-v1:0
    • anthropic.claude-instant-v1:0
  • DeepSeek:
    • deepseek.r1-v1:0
  • Meta:
    • meta.llama3-3-70b-instruct-v1:0
    • meta.llama3-2-90b-instruct-v1:0
    • meta.llama3-2-11b-instruct-v1:0
    • meta.llama3-2-3b-instruct-v1:0
    • meta.llama3-2-1b-instruct-v1:0
    • meta.llama3-1-405b-instruct-v1:0
    • meta.llama3-1-70b-instruct-v1:0
    • meta.llama3-1-70b-instruct-latency-optimized-v1:0
    • meta.llama3-1-8b-instruct-v1:0
    • meta.llama3-70b-instruct-v1:0
    • meta.llama3-8b-instruct-v1:0

Refer to the Amazon Bedrock documentation for the most up-to-date list of available models and their IDs. Make sure to use the model ID when configuring Saarthi, not the model name.

Configuration in Saarthi

  1. Open Saarthi Settings: Click the gear icon () in the Saarthi panel.
  2. Select Provider: Choose "Bedrock" from the "API Provider" dropdown.
  3. Select Authentication Method:
    • AWS Credentials:
      • Enter your "AWS Access Key" and "AWS Secret Key."
      • (Optional) Enter your "AWS Session Token" if you're using temporary credentials.
    • AWS Profile:
      • Enter your "AWS Profile" name (e.g., "default").
  4. Select Region: Choose the AWS region where your Bedrock service is available (e.g., "us-east-1").
  5. (Optional) Cross-Region Inference: Check "Use cross-region inference" if you want to access models in a region different from your configured AWS region.
  6. (Optional) VPC Endpoint: For enterprise environments:
    • Check "Use VPC Endpoint" to route all Bedrock API calls through your VPC endpoint
    • Enter your VPC endpoint URL in the text field that appears
    • This ensures all LLM transactions remain within your corporate network
  7. Select Model: Choose your desired model from the "Model" dropdown.

Tips and Notes

  • Permissions: Ensure your IAM user or role has the necessary permissions to invoke Bedrock models. The bedrock:InvokeModel permission is required.
  • Pricing: Refer to the Amazon Bedrock pricing page for details on model costs.
  • Cross-Region Inference: Using cross-region inference may result in higher latency.
  • VPC Endpoints: When using VPC endpoints, ensure your endpoint is properly configured to handle Bedrock API calls. This feature is particularly useful for organizations with strict security requirements that mandate keeping all API traffic within their private network.